Visit http://ilectureonline.com for more math and science lectures!

To donate:
http://www.ilectureonline.com/donate
https://www.patreon.com/user?u=3236071

A point charge Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity w. This can be considered as equivalent to a loop carrying a steady current QW/(2pi). A uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to b in one second. Assume that the radius of the orbit remains constant. The application of he magnetic field induces an EMF in the orbit. The induced EMF is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It is known that for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportional constant gamma.
Question: The magnitude of the induced electric field in the orbit at any instant of time during the time interval of the magnetic field change is:
A) BR/4
B) BR/2
C) BR
D) 2BR

Previous video in this series can be seen at:
https://youtu.be/zUqeKeLUoyM
Next video in this series can be seen at:
https://youtu.be/9-i3BH84pwQ